Bijlage C — Formules

Tip for HTML Version of Document

To copy a formula to MS Word, right-click on the formula and choose ’Copy to clipboard … MathML Code. Then use CTRL/CMD+V to paste the formula.

To copy a formula to an RMarkdown document, right-click on the formula and choose ‘Copy to clipboard … TeX Commands’. In RStudio Visual Markdown Editor choose Insert … Latex Math … Display Math and then CTRL/CMD+V to paste the formula.

C.1 Covariance and Correlation

(Sample) Covariance

\[cov(x,y) = \frac{\sum (x_{i} - \bar{x})(y_{i} - \bar{y})}{n-1}\]

Pearson Correlation

\[r = \frac{cov(x,y)}{SD(x) * SD(y)}\]

C.2 Linear Regression

Linear Regression Equation

\[y_{i} = b_{0} + b_{1}x_{1i} + b_{2}x_{2i} + ... + b_{k}x_{ki} + \epsilon_{i}\]

Simple Linear Regression: Slope

\[b_{1} = \frac{\sum(x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum(x_{i} - \bar{x})^2}\]

Simple Linear Regression: Intercept/Constant

\[b_{0} = \bar{y} - b_{1}\bar{x}\]

Regression Model with Interaction

\[y = b_{0} + b_{1}x_{1} + b_{2}x_{2} + b_{3}(x_{1}x_{2}) + \epsilon\]

Marginal Effects in Interaction Model

\[b_{1} + (x2 * b_{3})\] \[b_{2} + (x1 * b_{3})\]

t-test for regression coefficients

\[t = \frac{b}{SE_{b}}\]

Confidence Interval: Coefficient

\[CI = b \pm (t_{df} * SE)\]

Regression Sum of Squares (Also called: Model Sum of Squares)

\[SS_{Regression} = \sum(\hat{y} - \bar{y})^2\]

Residual Sum of Squares

\[SS_{Residual} = \sum(y_{i} - \hat{y})^2\]

Total Sum of Squares

\[SS_{Total} = \sum(y_{i} - \bar{y})^2\]

R2

\[R^2 = \frac{SS_{Regression}}{SS_{Total}}\]

\[R^2 = 1 - \frac{SS_{Residual}}{SS_{Total}} \]

Mean Squares: Residual

\[MS_{Residual} = \frac{SS_{Residual}}{\textrm{df}_{Residual}}\] \[\textrm{df}_{Residual} = n-k\] Mean Squares: Regression Model

\[MS_{Model} = \frac{SS_{Regression}}{df_{Model}}\]

\[df_{Model} = k\] F

\[F = \frac{MS_{Model}}{MS_{Residual}}\]

C.3 Logistic Regression

Logistic Regression Model with Single Explanatory Variable

\[\textrm{log(Odds)} = b_0 + b_1x_{1i} + b_2x_{2i}...\]

\[P(Y_{i} = 1) = \frac{1}{1 + e^{-(b_{0} + b_{1}x_{1i})}}\]

Odds and Probabiilty

\[odds = \frac{p}{1 - p}\]

\[p = \frac{odds}{1 + odds}\]

Odds Ratio

\[e^{b}\]

z statistic

\[z = \frac{b}{se}\]

Likelihood Ratio

\[\chi^2 = (-2LL_{baseline}) - (-2LL_{new})\]

\[\textrm{df} = k_{new} - k_{baseline}\]

C.4 Appendix: Critical Values of t-distribution

Critical Values of the t-distribution (Two-Tailed Test)
df 0.05 0.01
1 12.71 63.66
2 4.30 9.92
3 3.18 5.84
4 2.78 4.60
5 2.57 4.03
6 2.45 3.71
7 2.36 3.50
8 2.31 3.36
9 2.26 3.25
10 2.23 3.17
11 2.20 3.11
12 2.18 3.05
13 2.16 3.01
14 2.14 2.98
15 2.13 2.95
16 2.12 2.92
17 2.11 2.90
18 2.10 2.88
19 2.09 2.86
20 2.09 2.85
21 2.08 2.83
22 2.07 2.82
23 2.07 2.81
24 2.06 2.80
25 2.06 2.79
26 2.06 2.78
27 2.05 2.77
28 2.05 2.76
29 2.05 2.76
30 2.04 2.75
35 2.03 2.72
40 2.02 2.70
45 2.01 2.69
50 2.01 2.68
60 2.00 2.66
70 1.99 2.65
80 1.99 2.64
90 1.99 2.63
100 1.98 2.63
1.96 2.58